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Abstract. Pearn et al. (1999) considered a capability index C,,, a new gener-

alization of C,, for processes with asymmetric tolerances. In this paper, we
provide a comparison between C o and other existing generalizations of Cp,
on the accuracy of measuring process performance for processes with asym-
metric tolerances. We show that the new generalization C;, is superior to
other existing generalizations of C,,. Under the assumptlon of normality, we
derive explicit forms of the cumulative dlstrlbutlon function and the probability
density function of the estimated index C,/ ,. We show that the cumulative dis-
tribution function and the probability density function of the estimated index
Cp’,’ﬂk can be expressed in terms of a mixture of the chi-square distribution and
the normal distribution. The explicit forms of the cumulative distribution func-
tion and the probability density function considerably simplify the complexity
for analyzing the statistical properties of the estimated index C,,;.

Key words: Asymmetric loss function; Bias; Mean square error; Departure
ratio; Normally distributed process

1 Introduction

Process capability indices (PCls), which provide numerical measures on
whether a process meets the capability requirement preset in the factory, have
recently been widely used in the manufacturing industry. Examples include
the manufacturing of semiconductor products (Hoskins et al. (1988)), front-
end alignment for automobiles (Davis and Kaminsky (1989)), head/gimbals
assembly for memory storage systems (Rado (1989)), jet-turbine engine com-
ponents (Hubele et al. (1991)), flip-chips and chip-on-board (Noguera and
Nielsen (1992)), piston rings for automobile engineering (Chou (1994)), cable
locking terminals for automobile ignition system (Chou (1994)), speaker drivers
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(Pearn and Chen (1997)), electrolytic capacitors (Pearn and Chen (1997)), and
many others.

A process is said to have a symmetric tolerance if the target value T is set
to be the midpoint of the specification interval (LSL, USL), ie. T =m =
(USL + LSL)/2, where USL and LSL are the upper and the lower specifica-
tion limits. Most research in quality assurance literature has focused on cases
in which the manufacturing tolerance is symmetric. Examples include Kane
(1986), Chan et al. (1988), Choi and Owen (1990), Boyles (1991), Pearn et al.
(1992), Vannman (1995), Vannman and Kotz (1995), and Spiring (1997). Al-
though cases with symmetric tolerances are common in practical situations,
cases with asymmetric tolerances often occur in the manufacturing industry.
In general, asymmetric tolerances simply reflect that deviations from target
are less tolerable in one direction than the other (see Boyles (1994), Vinnman
(1997), and Wu and Tang (1998)). Asymmetric tolerances can also arise from
a situation where the tolerances are symmetric to begin with, but the process
follows a non-normal distribution and the data is transformed to achieve ap-
proximate normality, as shown by Chou et al. (1998) who have used Johnson
curves to transform non-normal process data. Unfortunately, there has been
comparatively little research published on cases with asymmetric tolerances.
Exceptions are Boyles (1994), Vannman (1997), Chen (1998), Pearn and Chen
(1998), Pearn et al. (1999), and Chen et al. (1999).

Three well-known basic indices are

USL - LSL
C, =

_ 1
14 60’ ’ ( )
min{USL — 4,z — LSL
Gy = MUSL 2 3 @)
USL — LSL
Cpm = (3)

6\/02+(u—T)2’

where u is the process mean and o is the process standard deviation. The index
C, only considers the process variability ¢ thus provides no sensitivity on pro-
cess departure at all. The index C,; takes the process mean into consideration
but it can fail to distinguish between on-target processes from off-target pro-
cesses (Pearn et al. (1992)). The index C,,, takes the proximity of process mean
from the target value into account, and is more sensitive to process departure
than C, and C. Pearn et al. (1992) proposed an index called Cp,x, which com-
bines the merits of the three basic indices C,, Cyr, and C,,,,. The index Cp has
been defined as:

min{USL — x, u — LSL}

3y/or+ (u—T)*

The index C,« is more sensitive to the departure of the process mean u from
the target value 7 than the other three indices C,, Cy, and C,,,,. For symmet-
ric tolerances, these indices provide reasonable measures on process potential
and performance. But, for asymmetric tolerances, none of these indices provide
consistent and reasonable measures on process capability.

)

Cpmk =
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2 Existing generalizations of Cpx

Boyles (1994) presented a comprehensive study on some indices including Cons
Cons Cikps Sikps Cpmic, and Sy for asymmetric tolerances, and compared them
with each other on two performance criteria including process yield and process
centering (the ability to cluster around the target). Based on the performance
comparisons, Boyles (1994) recommended the index S, which is a general-

ization of C,,, defined as:

1 1 USL —
S =707 S| ——=—E | 4

3 2 02+(#_T)2

i —LSL

@ I
o+ (u—T)°

1
2

(5)
where @(-) is the cumulative function of the standard normal distribution and
@~ !(-) is the inverse function of &(-).

Figures 1 and 2 display the plots of C,,x and S, respectively, for pro-
cesses with means 10 < u < 50, and standard deviations ¢ = 10/3 (top) and
o = 20/3 (bottom), where (LSL, T, USL) = (10,40, 50) is an asymmetric tol-
erance. Boyles (1994) also investigated the index C,,, and commented that
Comi has some advantages over S, particularly, the simplicity of its calcu-
lation and the easiness to work with analytically. However, for fixed process
standard deviation g, both C,,x and S, indices obtain their maximal values
not at u = T, but at some value x* which is between the target value 7" and
the center of the specification interval, m. The value of u* relative to T and
m reflects the compromise established by the two indices between the process
centering and the process yield.

To overcome the problem, Vinnman (1997) considered another generaliza-
tion of C,, to handle processes with asymmetric tolerances. Vinnman’s gener-
alization has been defined as:

d—|u—m|—ulu—T|

Cpa(ut,v) = , (6)
3y/02 +o(u—T)?
LSL T usL

1]
0.8]
0.5
0.4
0.2

of 10 20 30 a0 50
02 mean

Fig. 1. Plots of C,, values for processes with 10 < <50, ¢ =10/3 (top), 10 < u < 50,
o =20/3 (bottom), and (LSL, 7', USL) = (10,40, 50).
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Fig. 2. Plots of S, values for processes with 10 < <50, ¢ =10/3 (top), 10 < < 50,
o = 20/3 (bottom), and (LSL, T, USL) = (10,40, 50).
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Fig. 3. Plots of C,.(1,3) values for processes with 10 < x4 <50, o = 10/3 (top), 10 < u < 50,
o =20/3 (bottom), and (LSL, T, USL) = (10, 40, 50).

where u,v > 0 and d = (USL 4+ LSL)/2. We note that C,,(0,1) = Cp. For
u > 1, the index C,,(u,v) decreases when mean y shifts away from target in
either direction. In fact, C,,(u, v) decreases faster when yu shifts away from 7
to the closer specification limit than that to the farther specification limit. This
is an advantage since the index would respond faster to the shift towards “the
wrong side” of 7" than towards the middle of the specification interval. Vinn-
man (1997) showed that among many (u, v) values, (u,v) = (0,4) and (u,v) =
(1, 3) generate two indices which are most sensitive to process departure from
the target. We note that C,,(0,4) > 0 for a process with mean value falling
within the tolerance limits, i.e., for LSL < x < USL, which provides a clear
indication about the process condition. But, C,,(1,3) < 0 for some processes
with means falling within the tolerance limits. On the other hand, C,,(1,3)
obtains its maximal value when the process is on target, i.e., when ¢ = 7. But,
Cp4(0,4) obtains its maximal value when the process is off target. Figure 3
displays the plots of Cp,(1,3) for processes with characteristic 10 < u < 50,
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Fig. 4. Plots of C,,(0,4) values for processes with 10 < u < 50, o = 10/3 (top), 10 < u < 50,
o =20/3 (bottom), and (LSL, 7', USL) = (10,40, 50).

o =10/3 (top) and ¢ =20/3 (bottom), where the manufacturing specifi-
cations (LSL, 7, USL) = (10,40, 50) is an asymmetric tolerance. Figure 4
displays the plots of Cy,(0,4) for processes with characteristic 10 < u < 50,
o =10/3 (top) and ¢ = 20/3 (bottom), where the manufacturing specifica-
tions (LSL, T, USL) = (10,40, 50) is an asymmetric tolerance.

3 The generalization C,,,
Pearn and Chen (1998) considered a generalization of C,; for processes with
asymmetric tolerances. The generalization takes into account the asymmetry
of the tolerance, which reflects the process capability more accurately than the
original Cy. Pearn et al. (1999) applied the same idea and proposed a capa-
bility index C ,, a generalization of C,,, to handle processes with asym-

: ‘pmk> ° . ¢
metric tolerances. The generalization C” , is defined as:

‘pmk

b d* — A
T3 AR

where 4 =max{d(u—T)/D,,d(T—u)/D;}, A* = max{d*(u—T)/D,,
d*(T-w)/D;}, D,=USL—-T, D;=T —LSL, and d* = min{D,, D;}. Ob-
viously, if 7' = m (symmetric case), then 4 = A" = [u— T| and C;, reduces
to the original index Cp,i. We note that G, > 0 for a process with mean
falling within the tolerance limits, as for the indices Cypk, Spmk, Cpa(0,4) and
the yield-based index C,,. However, according to today’s modern quality im-
provement theories, reduction of variation from the target is just as important
as meeting the manufacturing specifications. Thus, on-target would be a desired
condition for a process. The factors 4 and 4* ensure that the new generaliza-
tion C;::nk obtains its maximal value at 4 = T (process is on-target) regard-

less of whether the tolerances are symmetric (7' = m) or asymmetric (7. m).

Further, for processes E and F with o = o, ugp < T,uy > T, satisfying the
relationship (ur — T)/D, = (T — ug)/Dy (i.e., processes E and F have equal

(7)
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Fig. 5. Surface plot of C”

pmk

with 10 < ¢ < 50 and 3 < ¢ < 6 for (LSL, 7, USL) = (10, 30, 50).

Fig. 6. Surface plot of C,,, with 10 < <50 and 3 < ¢ < 6 for (LSL, 7', USL) = (10,40, 50).

departure ratio), the index values given to processes E and F are the same. In
fact, the value of C, decreases faster when 4 moves away from 7 to the closer
specification limit, and decreases slower when u moves away from 7 to the
farther specification limit. We note that C,,(1,3) and C,,(0,4) can also differ-
entiate those changes.

Figure 5 displays the surface plot of C;;,, for (LSL, 7', USL) = (10, 30, 50),
for process means 10 < u < 50 and process standard deviations 3 < g < 6, we
note that C,an = Cpi for the symmetric case. Figure 6 displays the surface

plot of C, for (LSL,T,USL) = (10,40,50), 10 <x <50 and 3 <0 <6.

Figure 7 displays the plots of C), for processes with 10 < u <50, ¢ =10/3
(top) and o = 20/3 (bottom), where the specification limits (LSL, 7, USL) =
(10,40, 50) is asymmetric. For processes with asymmetric tolerances, the cor-
responding loss function is also asymmetric to 7. Figure 8 displays a typical
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Fig. 7. Plots of C, values for processes with 10 <x <50, o =10/3 (top), 10 <u <50,
o =20/3 (bottom), and (LSL, 7', USL) = (10,40, 50).
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Fig. 8. An asymmetric loss function corresponding to the asymmetric tolerance (LSL, 7', USL) =
(10,40, 50).

loss function for processes with an asymmetric tolerance (LSL, 7, USL) =
(10,40, 50), which can be defined as:

(T —x)/(T—LSL)]*>, LSL<x<T,
L(x)={ [(x—T)/(USL) — T)]>, T <x< USL, (8)
1, otherwise.

We note that the curve for the loss function corresponds to the asymmetric

tolerance. We also note that the curve in Figure 7 for the C,,, values is

smooth (differentiable) uniformly over the specification interval (10,50). On
the other hand, the curves for the values of Cpi, Cpa(1,3), and C,,(0,4) have
reflection points or corner points (which are not differentiable) on the middle
point (center) of the specification interval, as can be seen in Figure 1, Figure 3,
and Figure 4.
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4 Distribution of C,,,

To estimate the generalization C;;,, we consider the natural estimator pmk
defined in the following. The natural estlmator C! »mk 18 obtained by replacing
the process mean x and the process variance o2 by their conventional estima-
tors X and S2, which may be obtained from a stable process.

n>

cro=—_—= (9)

where d* =min{D,,D;}, A=max{d(X —T)/D,,d(T —X)/D;}, A* =
max{d*(X—T)/D,,d*(T—X)/Di}, X = Y/_ X;/n,and S} = > | (X;— X) 2/
n. If the manufacturing tolerance is symmetric, then d f=d, A=A" =
|X — T|, and the estimator C” reduces to Cpp = (d — | X — m\) /{3[S? +
(X — T)*"/?}, the natural estlmator of C,pi considered by Pearn et al. (1992)
for symmetric case.
We now define D* =n'/?(d*/s), D=n'*(d/c), K =nS>/c* Z=

n'/2(X —T)/o, Y = [max{(d/Du)Z, —(d/D)Z)})?, 6 =n'*(u—T)/o, and

4 = %, Then, the estimator C” mk Can be rewritten as:

K

1 D" — (d*/d)\/?

= 10
pmk 3\/m ( )

Under the assumption of normality, K is distributed as y2 |, a chi-square
distribution with n — 1 degrees of freedom, and Z is distributed as the normal
distribution N(J,1) with mean ¢ and variance 1. Let @(-) and ¢(-) be the
cumulative distribution function and the probability density function of the
standard normal distribution N(0, 1), respectively. Then, the cumulative dis-
tribution function and the probability density function of Z can be expressed
as: Fz(z) = &(z —0) and fz(z) = ¢(z — J). Hence, the cumulative distribution
function of Y can be expressed as:

Fy(y)=p(Y <y)=p(-di'Jy<Z <d;'\fy)
=d(dy' /3 —6) — d(—d; 'y - 9),

where dy = d/D; and d, = d/D,,. The probability density function of ¥ can be
expressed as:

1) = e FY(0) = 30 (0™ V5 =)+ d gt o). ()

Therefore, the cumulative distribution function of C” mk €an be obtained as
the followmg (see Appendix).
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Fer, ()
u/
0 < ——
) X = 3 )
0 D —u' /St 2 /
J Fx <( ugxz (1) S(x)t) fr(S(x)1)S(x) dt, - <x<0,
1
1 — ®(dy'D —6) + &(—d;'D - 6), x=0,
1 D*_ / S 2
1 —J Fx <( ugxz (1) —S)t | fr(S(x))S(x)dt, x>0,
0
(12)
and the probability density function of (A?p’:nk can be derived as:
fer (%)
o (D —=u'\/S(x)1)* _ 28(x)(D*—u'\/S(x)1)? u
Jl Ix (T =S(x)t | fr(S(x)1) o dt, -3 <x<0
N 1 * I 2 * ’ 2
(D*—u'/S(x)t) 28(x)(D*—u'/S(x)1)
JofK <9sz(x)t>fY(S(x)t) 03 dt, x>0
(13)

where D* = n'2(d* /o), u' = d*/d, S(x) = [D*/(u’'+3x)]?, Fx(-) is the cumu-
lative distribution function of K, fx(-) is the probability densny function of K,
and fy(+) is the probability density function of Y expressed as Eq. (11).

If the manufacturing tolerance is symmetric (7 = m), then D, = D; =d =
d*, D*=n"*(djo) =D, u' =1, dy=dr=1, S(x)= [D/(1+3x)]%, and the cumu-
lative distribution function of C”" omi 10 Eq. (12) reduces to:

Fey, (%)

0, ng;
JwFK<D A )m (WS dr, 5 <x<0,
1, (14
I = &(D—6)+P(—D —9), x=0,
I_L <D J___ )ﬁ((ﬂ(ww,x>q

and the corresponding probability density function is:
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Jer (%)

J e ((D—— VSn* S(x)z> Fr(S()n BZP= S(x)l)zdr,

) 9x2 —9x3

1
—g <x <0,

JlfK <(D_W - S(x)t) F(Seon SRO=VSE

0 9x2 9x3

(15)

As an illustration for some of the results obtained, we plot the probability
density functions of C,, . for an asymmetric case (D; :d : D, = 6 : 5 : 4) with
b=3,a=-10,-0.50.51.0, and n = 10,20,50, where a = (u— T)/o and
b=d"/o.

Figures 9-12 display the plots of the probability density functions of

At
‘pmk

5_

5_
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Fig. 9. The pdf of C'p’;”k with ¢ = d*/3, a = —1.0, and n = 10 (bottom), 20 (middle), and 50 (top)

for the asymmetric case D;:d : D, =6:5: 4.
B-
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Fig. 10. The pdf of C}an with ¢ = d*/3, a = —0.5, and n = 10 (bottom), 20 (middle), and 50 (top)
for the asymmetric case D;: d : D, =6:5: 4.
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Fig. 11. The pdf of C};/,/nk with ¢ = d*/3, a = 0.5, and n = 10 (bottom), 20 (middle), and 50 (top)
for the asymmetric case Dy :d : D, =6:5: 4.

13

0 0.4 06 0.8 1 1.2
Fig. 12. The pdf of ka with o = d*/3, a = 1.0, and n = 10 (bottom), 20 (middle), and 50 (top)
for the asymmetric case D; : d : D, =6:5: 4.

for the asymmetric case withD;:d:D,=6:5:4,0=d"/3,n= 10 ,20, and
50 for a=—1. 0 ( ok = 0.60), a=—0.5 (C;,, =0.82), a=0.5 (C;,, —0.71),
and a = 1.0 (C;,, = 0.42), respectively. From Figures 9-12 we observe that
for n = 10 the distributions are skew and have large spread. As n increases the
spread decreases and so does the skewness. We also observe that the estimated
index C i 1s approximately unbiased for sample size n > 50.

Pearn et al. (1999) derived the r-th moment of C i Without using the dis-

tribution of C” .. We note that the estimator C’ ok 18 'biased. The magnitude of

pmk
the bias is B( Cpm o) =E( p,'n i) = Coie- The mean square error can be expressed as
MSE( pmk) Var( pn7k)+Bz( pmk) where Var(Cpmk) = E( pmlc) Elz( pmk)

is the variance of C k- O investigate the behavior of the estimator C,, ,, the
bias and the mean square error are calculated (using Maple-V computer soft-
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Table 1. The values of Cy,, B(Cy,) and MSE(C,,,) for b =3, a=—1.0(0.5)1.0, d\ = 5/6,
d» =5/4, and n = 10(10)50
n a=-1.0 a=-0.5 a=0 a=05 a=10
bias | MSE | bias | MSE bias MSE | bias | MSE | bias | MSE
10 | 0.0485 | 0.0361 | 0.0763 | 0.0708 0.0079 | 0.0801 | 0.0635 | 0.0797 | 0.0406 | 0.0340
20 | 0.0228 | 0.0144 | 0.0378 | 0.0284 | —0.0130 | 0.0327 | 0.0318 | 0.0344 | 0.0191 | 0.0138
30 | 0.0149 | 0.0090 | 0.0250 | 0.0175 | —0.0166 | 0.0206 | 0.0212 | 0.0219 | 0.0125 | 0.0086
40 | 0.0111 | 0.0065 | 0.0186 | 0.0126 | —0.0173 | 0.0151 | 0.0158 | 0.0160 | 0.0093 | 0.0062
50 | 0.0078 | 0.0058 | 0.0148 | 0.0098 | —0.0173 | 0.0119 | 0.0126 | 0.0126 | 0.0068 | 0.0052
G 0.5975 0.8205 1.0000 0.7067 0.4165
Table 2. The values of Cy,, B(Cy,) and MSE(C,,,) for b =4, a=—1.0(0.5)1.0, d\ = 5/6,
d» =5/4, and n = 10(10)50
n a=-1.0 a=-0.5 a=0 a=05 a=10
bias | MSE | bias | MSE bias MSE | bias | MSE | bias | MSE
10 | 0.0658 | 0.0618 | 0.1039 | 0.1228 0.0341 | 0.1409 | 0.0842 | 0.1330 | 0.0537 | 0.0570
20 | 0.0310 | 0.0246 | 0.0509 | 0.0485 | —0.0008 | 0.0566 | 0.0415 | 0.0563 | 0.0253 | 0.0230
30 | 0.0202 | 0.0153 | 0.0336 | 0.0298 | —0.0086 | 0.0353 | 0.0276 | 0.0356 | 0.0165 | 0.0143
40 | 0.0150 | 0.0111 | 0.0250 | 0.0214 | —0.0114 | 0.0257 | 0.0206 | 0.0260 | 0.0123 | 0.0104
50 | 0.0104 | 0.0101 | 0.0199 | 0.0167 | —0.0126 | 0.0202 | 0.0164 | 0.0205 | 0.0089 | 0.0089
Gk 0.8536 1.1282 1.3333 0.9893 0.6247
Table 3. The values of Cy,, B(Cy,) and MSE(C,,,) for b =5, a=—1.0(0.5)1.0, d\ = 5/6,
dy = 5/4, and n = 10(10)50
n a=-1.0 a=-0.5 a=0 a=0.5 a=1.0
bias | MSE | bias | MSE bias MSE | bias | MSE | bias | MSE
10 | 0.0830 | 0.0947 | 0.1315] 0.1895 0.0604 | 0.2200 | 0.1048 | 0.2003 | 0.0668 | 0.0859
20 | 0.0391 | 0.0376 | 0.0640 | 0.0742 | 0.0115 | 0.0875 | 0.0512 | 0.0838 | 0.0315 | 0.0346
30 | 0.0256 | 0.0233 | 0.0421 | 0.0455 | —0.0006 | 0.0544 | 0.0339 | 0.0529 | 0.0206 | 0.0215
40 | 0.0190 | 0.0169 | 0.0314 | 0.0327 | —0.0055 | 0.0395 | 0.0253 | 0.0385 | 0.0153 | 0.0156
50 | 0.0131 | 0.0157 | 0.0249 | 0.0254 | —0.0079 | 0.0310 | 0.0202 | 0.0303 | 0.0109 | 0.0136
Conik 1.1097 1.4359 1.6667 1.2720 0.8329

ware) for various values of a = (¢ — T)/o, b=d*/o, dy =d/D;, d» = d/D,,

and sample size n. Tables 1, 2, and 3 display the values of

MSE(Cy

CII

‘pmk>

) fora = —1.0(0.5)1.0, (dy, dy) = (5/6,5/4), and n = 10(10)50, with

B ( Aplilnk) and

b =3,4, and 5, respectively. We note that the specification with (d),d,) =
(5/6,5/4) is asymmetric.

From Tables 1, 2, and 3, we observe that as the sample size n increases, both
the bias and the mean square error of ,,’,’nk decrease. Figure 13 displays the plot
of the bias of C,

plot) for fixed b =3, dy = 5/6, d» = 5/4. Figure 14 displays the plot of the

(vs. n) with @ = 0, 1.0, and —1.0 (from bottom to top in the
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Fig. 13. Bias plot of G,
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0.08
0.071
0.0
0.05
0.04
0.031
0.02]
0 20 31 40
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Fig. 14. MSE plot of Cp’,’ﬂk

bottom to top in the plot).

(vs. n) forb=3,d, =5/6,d, =5/4 with a = 1.0,—1.0, and 0 (from

MSE of € Sk (vs. m) with @ = 1.0, —1.0, and 0 (from bottom to top in the plot)
for fixed b =3, d, =5/6,d, = 5/4.

From Tables 1, 2, and 3, we also observe that as the value of b increases,
both the bias and the mean square error of C/! ook increase for fixed dy, d», a, and
n. Figure 15 displays the plot of the bias of C,,, (vs. n) with b = 3,4, and S
(from bottom to top in the plot) for fixed a = 0.5, d; = 5/6, d» = 5/4. Figure 16
displays the plot of the MSE of c’ ke (V8- 11) with b = 3,4, and 5 (from bottom
to top in the plot) for fixed a = 0. 5 dy=5/6,d, = 5/4

We note that C” i 15 @ blased estimator. The results in Tables 1, 2, and

3 indicate that the bias of ok 18 positive when y # T'. That is, CI;;ﬂk is gen-

erally overestimated by C[::M . On the other hand when u= T, we have
A=A4*=0 and C! = d*/(30), the bias of tends to be negative for

pmk mk
some cases as shown in Tables 1, 2, and 3. Thlfs C _1s smaller than C ke

and the bias is negative when u = T. This is partlally contributed by the fact
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Fig. 15. Bias plot of C};fnk (vs.n)fora=0.5d, =5/6,d» =5/4 with b = 3,4, and 5 (from bottom
to top in the plot).
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Fig. 16. MSE plot of C’p’;lk (vs.n)fora=0.5,d, =5/6,d, = 5/4 with b = 3,4, and 5 (from bottom
to top in the plot).

that both 4 and A* are calculated to be positive (see Eq. (9)) even when u =T
and A4 = A* = 0. Clearly, the presence of 4 and 4™ in Eq. (9) reduces the value
of the calculated C,, ;. As the sample size 7 increases, the mean square error

of C‘;ﬁnk decreases. Proper sample sizes for capability estimation are essential.
The smaller the sample size is, the higher the value of Cp’,’nk is required to justify

the true process capability.

5 Application example

The example presented in the following concerns with the capability of a pro-
cess which produces electronic telecommunication amplifiers. The original data
and a complete description of this process are given by Juran Institute (1990).
The quality characteristic of interest is the gain (the boosting ability) of an
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amplifier. The design of the amplifiers had called for a gain of 10 decibels (dB)
and allowed the amplifiers to be considered acceptable if the gain fell between
7.75 dB and 12.25 dB, i.e. (LSL, T, USL) = (7.75,10, 12.25). A sample of the
gains of 120 amplifiers was taken by the quality improvement team to estimate
the capability of the manufacturing process which produced the amplifiers.
Chou et al. (1998) noted that the data follow a non-normal distribution. Chou
et al. (1998) also used their best-fit Johnson transformation procedure to
transform the non-normal data to normality. The data were then fitted by an Sp
distribution. We note that it would be a mistake if someone use the original
specification limits, (LSL, T, USL) = (7.75, 10, 12.25), to evaluate the quality
through the transformed data. Using the estimated transformation (see Chou
et al. (1998))

(16)

Z:0.96+0.98ln( X-759 )

4684759 - X

we have the transformed specification (LSL', 7', USL') = (-2.31,1.00, 5.06)
as well as the transformed data.

Table 4 displays the sample of the original gains of 120 amplifiers listed in
Juran Institute (1990). Table 5 displays the corresponding transformed ampli-
fier gain data, using the estimated transformation in Eq. (16). We can now apply
a normal-based SPC procedure to the transformed data. We note that the

Table 4. The original amplifier gain data

8.1 10.4 8.8 9.7 7.8 9.9 11.7 8.0 9.3 9.0
8.2 8.9 10.1 9.4 9.2 7.9 9.5 10.9 7.8 8.3
9.1 8.4 9.6 11.1 7.9 8.5 8.7 7.8 10.5 8.5
11.5 8.0 7.9 8.3 8.7 10.0 9.4 9.0 9.2 10.7
9.3 9.7 8.7 8.2 8.9 8.6 9.5 9.4 8.8 8.3
8.4 9.1 10.1 7.8 8.1 8.8 8.0 9.2 8.4 7.8
7.9 8.5 9.2 8.7 10.2 7.9 9.8 8.3 9.0 9.6
9.9 10.6 8.6 9.4 8.8 8.2 10.5 9.7 9.1 8.0
8.7 9.8 8.5 8.9 9.1 8.4 8.1 9.5 8.7 9.3
8.1 10.1 9.6 8.3 8.0 9.8 9.0 8.9 8.1 9.7
8.5 8.2 9.0 10.2 9.5 8.3 8.9 9.1 10.3 8.4
8.6 9.2 8.5 9.6 9.0 10.7 8.6 10.0 8.8 8.6

Table 5. The transformed amplifier gain data

-1.1 1.4 —0.1 0.8 -2.0 0.9 2.9 -1.3 0.4 0.1
—0.9 0.0 1.1 0.5 0.3 —1.6 0.6 1.8 -2.0 —0.7
0.2 -0.6 0.7 2.0 —1.6 —0.4 -0.2 -2.0 1.4 -0.4
2.6 -1.3 -1.6 —0.7 —0.2 1.0 0.5 0.1 0.3 1.6
0.4 0.8 -0.2 -0.9 0.0 -0.3 0.6 0.5 —0.1 -0.7
—-0.6 0.2 1.1 -2.0 -1.1 —0.1 -13 0.3 —0.6 -2.0
-1.6 -0.4 0.3 -0.2 1.2 —1.6 0.9 -0.7 0.1 0.7
0.9 1.5 -0.3 0.5 —0.1 -0.9 1.4 0.8 0.2 -13
—0.2 0.9 —0.4 0.0 0.2 —0.6 —1.1 0.6 —0.2 0.4
-1.1 1.1 0.7 -0.7 -13 0.9 0.1 0.0 -1.1 0.8
-0.4 -0.9 0.1 1.2 0.6 —0.7 0.0 0.2 1.3 —-0.6

-0.3 0.3 -0.4 0.7 0.1 1.6 -0.3 1.0 —0.1 -0.3
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transformed specification (LSL', 7/, USL') is asymmetric. Therefore, we apply

the proposed generalization C,,, on the transformed data. We first calculate

d = (USL' — LSL')/2 = 3.685, d* = min{D,, D;} = mln{4 06,3.31} = 3.31,
n=120, Z= (> 1Z)/n—0000713 S2=S" (7 —2Z)* /n—0977 A=
max{d(Z—T')/D,,d(T'-Z)/D;} = max{ 0.907,1.112} = 1.112, and 4™ =
max{d*(Z—T')/D,,d*(T'—Z)/D;} = max{ —0.815,0.999} =0.999. We then

calculate the estimated capability index C,; as:

d*— A*

mk — T
3,/S2 + A?

While all the 120 amplifiers fell within the specification limits, the low value
of C ’fnk shows that the average quality of the amphﬁers significantly deviates
from the target value, which is unsatisfactory causing the communication
failed. The quality improvement team could now concentrate their investiga-
tion to find out why the manufacturing line was not capable to produce ampli-
fiers with average quality closer to the target value. Some quality improvement
activities involving Taguchi’s parameter designs should be initiated to identify
the significant factors causing the process failing to cluster around the target
value.

=0.52.

6 Conclusions

In this paper, we first reviewed the existing generalizations of C,,, including
Symi and C,(u, v) which are proposed by Boyles (1994) and Vannman (1997),
respectively, for processes with asymmetric tolerances. We investigated the
new generalization C’: .« proposed by Pearn et al. (1999) and compared with
Spmic and Cyy (1, v). We demonstrated that the new generalization Cj . is supe-
rior to Sy, and Cp,(u, v). For processes with normal distributions, we obtained
the cumulative distribution function and the probability density function of the
estimated index C - We showed that the cumulative distribution function and

the probability den51ty function of the estimated index Cp’fnk can be expressed in

terms of a mixture of the chi-square distribution and the normal distribution,
which are considerably more explicit and simpler than those presented in Pearn
et al (1999). We also analyzed the bias and the MSE of the estimated index

pmk for normally distributed processes.
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Appendix

Under the assumption of normality, the cumulative distribution function and
the probability density function of pmk can be derived as follows. We first

consider the case with x > 0. Using the technique of conditioning C!’ ok O Y
in Eq. (10), we may obtain

F, 0 =p( 57 =)

* a0
<o (T <)

u'\JY

—1- (x/—<D* v = y)fy<>

=1- J:p(x/Ker < m_%ﬁ)fy(y) dy,
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where u' = d*/d. Noting that D*/u’ = n'/*(d/s) = D, since

D*_ /
(VTS <2

for x > 0 and y > D?, then

D? * oy
For =1 [ p(VETS <) s (A1)

‘pmk

Further, since

D —u' y2

for [D*/(u' + 3x)}2 < y < D?, then by rearranging Eq. (A1) we obtain

D? oy 2
By (0= 1- | %l«%ﬁmwy

pmik 0

[D*/(u'+3x)) D* —u'\/fy 2
| p(K<(9x/)—y D (A

0

Changing the varlable with 7 = y/S(x) in the above integral, where S(x) =
[D*/(u’ + 3x)]%, we have y = S(x)¢ and dy = S(x) dt. Hence,

Fo (x)=1- Jl Fx <<D - ”;XZS @0 S(x)l> Fr(S()0)S(x) dr,

‘pmk 0

for x > 0. (A3)

For the case with x < 0, we have

Fey, () =»p (3\/1%_ )

Co(vErT < Py 2 ) ha

wp<\/K +y< W)fy(y) dy.
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Since

D* —u’
p(\/KerS #) —0,

for x < 0 and y < D?, then

Ry )= | p(VET < 25 oy (A4

pmik D2

Further, since

* / 2
,,(,(Sm_y>:o,

9x2

for x < —u'/3, y < D?, and for —u'/3 <x <0, D <y <[D*/(u’ +3x)]%,
then by rearranging Eq. (A4) we obtain

© ¥ ) 2
ey, ()= | p<1< < M—y>fy(y) dy

pmk D2 9x2
" (D" —u' )’ .
:J[Dw s )]zFK<Tzf—y fr(y)dy, (A5)

for —u’/3 < x < 0. Changing the variable with # = y/S(x) in the above in-
tegral, where S(x) = [D*/(u’ + 3x)]%, we have y = S(x)¢ and dy = S(x)dL.
Hence,

F-

"
pmk

o0 x ) 2
0= FK((D w0 —S(x)z)fy<s<x>z>s<x>dz, (A6)

1 9X2

for —u'/3 < x < 0.

Noting that D*/u’ = D, the result for the case with x = 0 is trivial. Com-
bining Egs. (A3) and (A6), we obtain Eq. (12) for the cumulative distribution
function of C";,’nk. Taking the derivative of the cumulative distribution function
of G, with Leibniz’s rule, we obtain the probability density function of C,,
in Eq. (13).



